
Multi-path route guidance with walking
distance integration

Antonis F. Lentzakis, Chunyang Sun

OCT 2018

Motivation
• Travelers unfamiliar with an area are frequently unaware of

route options available

• Familiar travelers possess only limited route options
knowledge

• Congestion occurrence can be unpredictable (incidents)

• Recurrent congestion also contains randomness due to
variability in travel demand levels and network performance

Goals
• Up-to-date information enables travelers to make improved

route choice decisions

• Reduction of individual travelers’ travel times (user oriented
approach)

• Better utilization of existing infrastructure

Shortest Path Algorithms for Route Planning
• Basic Techniques (Dijkstra, Bellman-Ford, Floyd-Warshall)

• Goal-Directed Techniques (A* Search, Geometric Containers,
Arc Flags, Precomputed Cluster Distances, Compressed Path
Databases)

• Separator-Based Techniques (Vertex/Arc Separators)

• Hierarchical Techniques (Contraction hierarchies, Reach as
centrality measure on vertices)

• Bounded-Hop Techniques (Labeling Algorithms, Transit Node
Routing, Pruned Highway Labeling

r

i

j

s

r

i j

s

: pickup point

: non-terminal

junctions

: destination

Where, for a directed graph 𝐺 = (𝐾, 𝐴):
• 𝐾 : set of junctions
• 𝐴 : set of links
• 𝑟 ∈ 𝐾𝑜 : pickup point 𝑟 belonging to set of origin region junctions 𝐾𝑜
• 𝑠 ∈ 𝐾𝑑 : “true” destination 𝑠 belonging to set of destination region junctions 𝐾𝑑
• 𝑖, 𝑗 ∈ 𝐾|(𝑖, 𝑗) ∈ A : neighboring junctions 𝑖 and 𝑗
• 𝑣𝑖𝑗 𝑡 = 𝑎𝑛𝑡

𝑛 + 𝑎𝑛−1𝑡
𝑛−1+…+𝑎1𝑡 + 𝑎0: a polynomial approximation of the Link Speed Profile Function at time

t for link between neighboring junctions 𝑖 and 𝑗

• 𝐷 = [𝑑𝑖𝑗]
|𝐾| ×|𝐾| : the adjacency matrix for graph G, where d𝑖𝑗 = 1 if 𝑖, 𝑗 ∈ 𝐴, 0 otherwise

• 𝑥𝑖𝑗: the geographical distance between neighboring junctions 𝑖 and 𝑗

• 𝑡𝑖𝑗: travel time on link between neighboring junctions 𝑖 and 𝑗

Speed-profile dependent, Dijktra-based, SP algorithm
with walking distance integration

(1) Speed Profile Function Extension to Dijkstra’s Algorithm

Input:

• Network Topology (adjacency matrix D)

• ∀𝑖, 𝑗 ∈ 𝐾| 𝑖, 𝑗 ∈ 𝐴 𝑣𝑖𝑗 𝑡 , 𝑥𝑖𝑗

Steps:

For all paths 𝑝 ≔ 𝑟, 𝑘1, … , 𝑘𝑤 , 𝑠 ∀𝑙 ∈ 1, … , 𝑤 , 𝑘𝑙 ∈ 𝐾\{𝑟, 𝑠 ˄ 𝑟, 𝑘1 ∈ 𝐴˄ 𝑘𝑤 , 𝑠 ∈ 𝐴˄ ∀𝑚 ∈ 1, … , 𝑤 − 1 , 𝑘𝑚, 𝑘𝑚+1 ∈ 𝐴 ˄𝑙 ≠ 𝑚 →

𝑘𝑙 ≠ 𝑘𝑚}

1. Set pickup point r as current and place all other junctions in the unvisited set.

2. For origin r set as current, calculate tentative travel times for all neighboring junctions

• 𝑡𝑟𝑘1 ←
0

𝑡𝑟𝑘1 𝑣𝑟𝑘1 𝜏 𝑑𝜏 − 𝑥𝑟𝑘1

Compare the newly calculated tentative travel times to the current assigned value and assign the minimum

3. For all subsequent junctions, other than pickup point r calculate the tentative travel times as follows:

• if 𝑘𝑙=𝑘1

(∀𝑘𝑚 𝑘𝑙 , 𝑘𝑚 ∈ 𝐴 𝑡𝑘𝑙𝑘𝑚 ←
𝑡𝑟𝑘

𝑡𝑘𝑙𝑘𝑚 𝑣𝑘𝑙𝑘𝑚 𝜏 𝑑𝜏 − 𝑥𝑘𝑙𝑘𝑚

• if 𝑘𝑚 ≠ 𝑘1 && 𝑘𝑚 ≠ 𝑘𝑤

(∀𝑘𝑙 𝑘𝑙 , 𝑘𝑚 ∈ 𝐴 𝑡𝑘𝑙𝑘𝑚 ←
𝑡𝑘𝑙−1𝑘𝑙

𝑡𝑘𝑙𝑘𝑚 𝑣𝑘𝑙𝑘𝑚 𝜏 𝑑𝜏 − 𝑥𝑘𝑙𝑘𝑚

• if 𝑘𝑚=𝑘𝑤

(∀𝑘𝑚 𝑘𝑚, 𝑠 ∈ 𝐴 𝑡𝑘𝑚𝑠 ← 𝑡𝑘𝑚−1𝑘𝑚 +
𝑥𝑘𝑚𝑠

𝑣𝑤𝑎𝑙𝑘

When we are done considering all of the neighboring junctions,

mark the current waypoint as visited and remove from the unvisited set.

4. If the “true” destination s has been marked visited then stop. Otherwise select the neighboring node with the minimum tentative travel
time, set as new current junction and go back to step 3.

Assuming walking speed 𝑣𝑤𝑎𝑙𝑘 = 5 𝑘𝑚/ℎ, we designate the last non-terminal node 𝑘𝑚 in our path as a drop-off point

Grid Network Testing

(2) Speed Profile Function Extension to Yen’s Algorithm for Multi-Path Route Guidance

• 𝑝𝑞 ≔ 𝑟, 𝑘1
𝑞
, … , 𝑘𝑤

𝑞
, 𝑠 representing a shortest path

• 𝑑𝑖
𝑞

representing the deviation from 𝑘
𝑞−1

at junction 𝑘𝑖
𝑞−1

• 𝑒𝑖
𝑞
≔ 𝑟, 𝑘1

𝑞
, … , 𝑘𝑖

𝑞
,𝑓𝑖

𝑞
≔ 𝑘𝑖+1

𝑞
, … , 𝑘𝑤

𝑞
, 𝑠 , representing the root and spur of 𝑑𝑖

𝑞
respectively

Steps:

• Find shortest path 𝑝1 derived from Algorithm (1).

• For 𝑞 = 2, 3, … , find 𝑘
𝑞

as follows

1. Let 𝐵
𝑞
= 𝐵

𝑞−1
, the set of candidate paths from iteration 𝑞-1

2. For 1 ≤ 𝑖 ≤ 𝑝𝑞−1 do

• Let 𝑦 = 𝑘𝑖
𝑞−1

• Hide incoming edges to 𝑦 for the remainder of iteration 𝑞

• For each 𝑧 s.t. the first 𝑖 junctions in 𝑝𝑧 match 𝑝𝑞−1 do

• Hide edge (𝑦, 𝑘𝑖+1
𝑧) for remainder of iteration 𝑞

• 𝑒𝑖
𝑞

are the first 𝑖 junctions of 𝑘
𝑞−1

• 𝑓𝑖
𝑞

is the shortest path from 𝑦 to 𝑠, derived by algorithm (1)

• Concatenate 𝑒𝑖
𝑞

and 𝑓𝑖
𝑞

to form 𝑑𝑖
𝑞

• Add candidate path 𝑑𝑖
𝑞

to 𝐵
𝑞

• Return the shortest path from 𝐵
𝑞

NTU Campus Network

Multi-path route guidance for Jurong area network

Given origin and

destination, the algorithm

suggests 2 best routes.

1st choice

2nd choice

Origin

Destination

Concluding Remarks
• A multi-path route guidance system with walking distance

integration was developed

• The part of multi-path path calculation has already been
tested on NTU campus and Jurong area network

Video Links
• https://www.youtube.com/watch?v=3mnf5J4oB8I

• https://www.youtube.com/watch?v=tRP420yvqD0

Future Considerations
• Walking distance could be determined using Manhattan

distance rather than Euclidean distance for practical
applications

https://www.youtube.com/watch?v=3mnf5J4oB8I
https://www.youtube.com/watch?v=tRP420yvqD0

