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bstract

echnological advancements have focused increasing attention on Automated Mobility-on
emand (AMOD) as a promising solution that may improve future urban mobility. Durin
e last decade, extensive research has been conducted on the design and evaluation of AMOD
stems using simulation models. This paper adds to this growing body of literature by in
stigating the network impacts of AMOD through high-fidelity activity- and agent-base
affic simulation, including detailed models of AMOD fleet operations. Through scenari
mulations of the entire island of Singapore, we explore network traffic dynamics by employ
g the concept of the Macroscopic Fundamental Diagram (MFD). Taking into account th
atial variability of density, we are able to capture the hysteresis loops, which inevitabl
rm in a network of this size. Model estimation results at both the vehicle and passenge
w level are documented. Environmental impacts including energy and emissions are als
scussed. Findings from the case study of Singapore suggest that the introduction of AMOD
ay bring about significant impacts on network performance in terms of increased VKT, ad
tional travel delay and energy consumption, while reducing vehicle emissions, with respec
the baseline. Despite the increase in network congestion, production of passenger flow

mains relatively unchanged.

eywords: Automated Mobility-on-Demand (AMOD), Agent-based Simulation,
acroscopic Fundamental Diagram (MFD), Multimodality

. Introduction

Recent technological advancements are changing the way we view urban mobility system
d are set to bring about a host of opportunities to improve mobility, accessibility, an
ability. This is evident from the advent of transportation networking companies (TNC
d ride-sourcing services, hereafter termed Mobility-on-Demand (MOD). TNCs are rapidl
bracing new business models of shared mobility, on-demand ride-hailing and seamles

ultimodality, by employing a multi-sided business platform which attracts both driver
d customers (passengers). App-based MOD services have become an entrenched mobilit
tion penetrating 7-8% of the market, generating 44 billion USD of worldwide revenu
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2017 (OECD, 2018), and are projected to reach a market penetration rate of 13% wit
uble the revenue within five years (Statista, 2017). The main factors to which the larg
option rates can be attributed are respondents’ satisfaction with low waiting and trave

mes, ease-of-use, and the convenience of smartphone-based services (Rayle et al., 2016).
The potential of integrating autonomous vehicle (AV) technology and ride-sourcing plat

rms, as part of AV-based on-demand shared-ride services, hereafter termed Automate
obility-on-Demand (AMOD), has been well recognized by major technology companies
gnificant progress has been made in AV technology itself by the traditional automotiv
dustry as well as the emerging AV software platform companies, including Nvidia Driv
GX, Aptiv (formerly Delphi Connection Systems), Waymo (formerly Google Self Drivin
ar project). Technology companies have been running trials on AV-based mobility services
g., Waymo has accumulated more than 10 million miles of on-road testing from 2009 t
18. Some major players are contributing to the realization of AMOD services by enter
g into partnerships with traditional car-makers and TNCs, e.g. the Early Ride Program

Waymo with self-driving Chrysler cars in Phoenix, the first commercial service by Apti
hich takes advantage of the ride-hailing network of Lyft with an autonomous fleet of BMW
rs in Las Vegas.

Recent market research (Jadhav, 2018) projects the growth of the global autonomou
obility market to increase from 5 billion USD (in 2019) to 556 billion USD (in 2026) wit
reseeable benefits including improved safety (given the fact that 94% of accidents are cause
human factors), higher transportation network throughput, improved efficiency (with cen

alized fleet operation), more affordable services (due to competitive cost structures), as we
other long-term benefits on urbanization. However, these benefits are as of yet far from
aranteed, because of economic and social barriers (Fagnant and Kockelman (2015)), larg
certainty on the cost and pricing of AMOD (Bösch et al. (2018)), and potential advers
ects of AMOD on existing transportation systems, such as induced demand, cannibaliza

on of transit, congestion, increased Vehicle-Kilometers-Traveled (VKT), and empty trip
volving dead heading (Simoni et al. (2019); Hörl et al. (2019); Zhang et al. (2018)), a
s already been observed with MOD services (Laris). For this reason, a recent white pape
atherine Kortum, 2018) also points out the importance of studying the design of AMOD
stems (involving fleet management and operation, supply of infrastructure for charging an
rking) and their impacts on transportation (including system capacity, VKT, transit, trave

ehavior and land use patterns). Regarding future challenges, the standing committee o
affic flow theory and characteristics (TFTC) suggests specific directions over four primar
eas: simulation, connected and automated vehicle technologies, network-wide modeling
d multimodality (Ahn et al. (2019)).
In this respect, this paper studies the potential network impacts of AMOD using an agent

d activity-based traffic simulation platform. Demand is modeled using an activity-base
odel system (ABM), that draws on stated preferences data from a smartphone-based surve
Singapore. Supply is modeled using an on-demand mobility service controller (that repli
tes the operations of MOD/AMOD fleets involving assignment and rebalancing of servic
hicles) integrated within a mesoscopic multimodal network simulator. Interactions betwee
mand and supply are explicitly modeled. Through scenario simulations of the entire net

ork of Singapore, we contribute to the literature on AMOD, by employing network-wid
acroscopic Fundamental Diagrams (hereafter termed as MFDs) to explore congestion pat
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rns over the entire network. In order to examine the impact of introducing AMOD service
existing multimodal networks, we take inspiration from past literature on generalizatio

.g. Ramezani et al. (2015)) and extension of the MFD concept (e.g. Geroliminis et a
014)).

. Past Research

1. AMOD System Design and Evaluation

Extensive research, employing simulation-based optimization methods, has endeavoure
analyze the impact of AMOD services on transportation networks. Initial studies examine
e potential of AMOD services using queuing theory and network models. Spieser et a
014) estimated the AMOD fleet size required to serve all existing private vehicle trip
Singapore and concluded that fewer vehicles are required to serve existing demand wit

asonable waiting times. Along similar lines, Burns et al. (2015) analyzed travel patterns
st estimates, and vehicle requirements for different network configurations correspondin
mid-sized, low-density, and densely-populated urban areas.
Researchers have also addressed the deployment and operations of on-demand service

d proposed novel vehicle assignment and rebalancing strategies to efficiently deal wit
atio-temporal variations in demand. Linear and integer programming approaches wer
ilized for the minimization of vehicle rebalancing while maintaining vehicle availability ove
e network (Pavone et al. (2011), Zhang and Pavone (2016)). Similarly, Zachariah et a
014) solved a rebalancing assignment problem of AV taxis in New Jersey by minimizin
e number of empty vehicles on the network. Researchers have also proposed solution
the fleet sizing problem using the concept of shareability networks and –using the New

ork taxicab dataset– have shown a significant reduction in the cumulative trip length (Sant
al. (2014)) and required fleet size to accommodate existing demand (Alonso-Mora et a

017); Vazifeh et al. (2018)). Hyland and Mahmassani (2018) employed an agent-base
mulation, which uses a mathematical programming solver to compare a variety of heuristi
d optimization-based assignments in grid networks. Presenting a case study with Chicag
xi demand data, they suggest that ‘sophisticated’ assignment algorithms are able to serv
ore incoming requests with limited fleet size and result in fewer empty vehicles within th
et.
Regarding the effects of AMOD services, Martinez and Viegas (2017), using agent-base

mulations, reported the potential reduction of vehicle population, travel volume, and park
g spaces and increased fleet mileage in Lisbon, Portugal. Similar findings have also bee
ported in Fagnant and Kockelman (2014), who examined AMOD service impacts with
ortion of existing trips (taken from NHTS, 2009) in a synthetic city similar to Austin, Texas
heir results showed that shared AVs (hereafter termed as SAVs) can fulfill the vehicle need
nearly 12 privately owned cars, serve 31 to 41 requests per day, and reduce the require
rking spaces by 11 per service vehicle. However, these studies fail to capture networ
ngestion effects, as well as the interactions between demand and supply.

Recent studies have addressed the aforementioned shortcomings using agent-based traffi
mulations. Boesch et al. (2016) determined the fleet sizes required to satisfy differen
vels of demand in the greater Zurich area, Switzerland, using the multi-agent transpor
mulation software MATSim (Horni et al. (2016)) and reported that a significant reductio
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the vehicle population can be achieved when introducing an AMOD service (that can fulfi
quests within a waiting time of 10 minutes, similar to previous literature). Bischoff an
aciejewski (2016) obtained similar results on the replacement of private trips, for the city o
erlin, by solving the dynamic vehicle routing problem (DVRP) with MATSim. Maciejewsk
d Bischoff (2016) investigated congestion effects of AV taxis with travel time and dela
tios for scaled-down scenarios over different settings (of replacement rates, fleet sizes, an
ad capacity levels) and suggested that large fleets may aggravate congestion because o
occupied trips, assuming there is no road capacity improvement by automation. Further

mulation scenarios of Zurich from Hörl et al. (2019) tested different AMOD fleet operationa
olicies using the daily travel patterns extracted from a synthetic Swiss population (whic
nerated around 360k trips for AMOD). The study reported that –using a feedforwar
idic rebalancing algorithm– a fleet size of 7,000 vehicles was able to serve 90% of request

ithin 5 minutes, and further examined the cost implications of AMOD services based o
ösch et al. (2018). From a recent case study (Segui-Gasco et al. (2019)) in Greenwich
ondon, UK, the authors integrated a fleet simulation software called IMSim to MATSim
order to evaluate different configurations of vehicle specifications, fleet sizes, parking an
arging infrastructure and service criteria from traveler, operator, and city’s perspectives
he authors indicated the negative effects of AMOD, whereby AMOD fleet vehicles com
have additional travel distances, which may result in added congestion, thus emphasizin
e need for future research to conduct more detailed investigations. In order to explicitl
nsider demand-supply interactions, Azevedo et al. (2016) analyzed the sensitivity of AMOD
pply (i.e. fleet sizes, parking configurations) on travel behavior (i.e. mode shares, routes
d destination choices), and more recently, Basu et al. (2018) investigated the potentia
AMOD services to substitute mass transit, using an agent- and activity-based simulatio

atform.
Despite the growing body of literature on AMOD systems, several limitations remain:

(i) Simplified abstraction of the urban network including grid type networks (Fagnant an
Kockelman (2014)), Euclidean planes (Spieser et al. (2014)), quasi-dynamic grid-base
networks (Zhang and Pavone (2015); Martinez and Viegas (2017); Fagnant and Kock
elman (2018)), synthetic grids (Hyland and Mahmassani (2018)), prototypical citie
(Basu et al. (2018))

(ii) Coarse-grained simulation models where approximations are made that employ stati
travel times without using detailed models of network congestion (Spieser et al. (2014)
Alonso-Mora et al. (2017); Fagnant and Kockelman (2018); Farhan and Chen (2018)
Chen et al. (2016); Burns et al. (2015); Zhang and Pavone (2016); Boesch et al. (2016)

iii) Substituting a proportion of existing private trips with AMOD and limited modelin
of behavioral preferences towards AMOD (Burns et al. (2015); Boesch et al. (2016)
Zhang and Pavone (2016); Maciejewski and Bischoff (2016); Bischoff and Maciejewsk
(2016); Hörl et al. (2019)).

To overcome these limitations, recent studies have started to integrate on-demand servic
mulators with a traffic simulator (i.e. Segui-Gasco et al. (2019); Oh et al. (2020b,a)) t
pture future impacts of AMOD on demand and supply. However, an analysis of networ
affic dynamics has, to the best of our knowledge, not been conducted on large-scale urba
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tworks, and consequently, the understanding of the network effects of AMOD still warrant
vestigation.

2. Network-wide Traffic Modeling

A recent trend for capturing congestion patterns of urban areas is modeling and ana
zing network traffic dynamics at the urban-scale, utilizing the MFD concept. In the pas
cade, the spatial scale of traffic modeling has been extended to the network level, whereb
gregated traffic dynamics are described collectively over the urban area. Initial studies o
acroscopic relationships dating back to the 1960s, determined the optimum density nec
sary for sustaining maximum flow rate in a given area (Smeed (1967); Godfrey (1969))
llowing that, Herman and Prigogine (1979) proposed a two-fluid model that models th
lationship between average vehicular speed and density, later verified by simulation (Mah
assani et al. (1987)). The concept of the MFD was formalized by assuming a homogeneou
ngestion distribution over an urban area (Daganzo (2007)) and empirically evidenced b
e well-defined macroscopic relationship between network production (i.e. average flow, tri
mpletion rate) and accumulation (average density, total vehicles on the network), in a stud
Yokohama, Japan (Geroliminis and Daganzo (2008)). The existence of MFDs have sinc

een verified and reproduced for other cities all over the world: Toulouse, France (Buisso
d Ladier (2009)), Zurich, Switzerland (Ambühl et al. (2017); Loder et al. (2017)), Rome

aly (Bazzani et al. (2011)), Sendai, Japan (WADA et al. (2015)), Shenzhen, China (Ji et a
014)), Brisbane, Australia (Tsubota et al. (2014)), Minnesota, USA (Geroliminis and Su
011)), Amsterdam, Netherlands (Knoop and Hoogendoorn (2013)), Lyon, France (Mariott
018)).

The MFD concept has been employed in the implementation of large-scale traffic con
ol measures by reducing vehicle accumulation to its critical level so as to mitigate overa
ngestion. It includes perimeter control, whereby metering of the number of vehicles int
specific “protected” region takes place (Daganzo (2007); Haddad and Geroliminis (2012)
addad et al. (2013); Keyvan-Ekbatani et al. (2012); Ramezani et al. (2015); Gerolimini
al. (2012); Kouvelas et al. (2017); Kim et al. (2018)), pricing affecting travel behavio
mode and destination choice (Geroliminis and Levinson (2009); Gonzales and Daganz

012); Zheng et al. (2012); Simoni et al. (2015); Zheng and Geroliminis (2016)), rout
idance (Yildirimoglu et al. (2015); Lentzakis et al. (2018)), space allocation (Zheng an
eroliminis (2013)), and parking (Leclercq et al. (2017)).

To estimate the MFD, researchers have utilized both analytical and experimental ap
oaches. Daganzo and Geroliminis (2008) analytically presented the ‘cuts method’ base
variational theory by determining the different upper bounds on the MFD plane. Later

eclercq and Geroliminis (2013) utilized this approach in estimating the MFD in simpl
tworks with different routes, and Laval and Castrillón (2015) proposed a stochastic ap
oximation method to estimate the MFD of an urban corridor based on variational theory
udies employing experimental approaches estimated the flow and density with sensor dat
served based on Eulerian (Shoufeng et al. (2013)) and Lagrangian (Nagle and Gayah (2013)
proaches. Readers can refer to Leclercq et al. (2014) for more details.
The shape of MFDs can be affected by several factors including network supply (e.g

ometric features, signal timings, road capacity, heterogeneity of congestion) and deman
.g. route choice, detouring, OD flows). Buisson and Ladier (2009) attributed the loop-lik
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steresis shape of the MFD to the local heterogeneity of sensor distribution over the net
ork, network composition involving road types and spatial distribution of demand and loca
ngestion, and were the first to relax the homogeneity conditions of the MFD described i
rlier studies (Geroliminis and Daganzo (2008); Geroliminis et al. (2007)). This hystere
s phenomenon has been repeatedly observed or reproduced from further studies on bot

pirical data and simulation data (Mazloumian et al. (2010); Gayah and Daganzo (2011)
aganzo et al. (2011), Geroliminis and Sun (2011), Mahmassani et al. (2013), Mühlich et a
014), Saeedmanesh and Geroliminis (2015)) showing different average flow rates during th
set and dissipation of congestion. In addition, the degree of spatial variation of networ
cupancy has been used to explain the size of hysteresis (Saberi and Mahmassani (2012)
beri et al. (2014)). To incorporate the spatial variation into the MFD modeling framework
noop et al. (2015) generalized the MFD (GMFD), describing the relation between averag
w with average density and density heterogeneity. The authors explained the occurrenc
hysteresis as a result of nucleation effects and demonstrated the performance loss du
spatial heterogeneity. Knoop and Hoogendoorn (2013) predicted network production b

rmulating the GMFD with both non-parametrized and parameterized forms. Ramezan
al. (2015) also integrated the dynamics of heterogeneity into the aggregated model fo

bregion-based MFDs and their perimeter control.
The effect of route choice behavior on the scatter of MFD has been explored by man

udies (Yildirimoglu et al. (2015); Leclercq and Geroliminis (2013); Gayah and Daganz
011); Gayah et al. (2014)). Leclercq and Geroliminis (2013) posited that the scatter of MFD
affected by route choices and (uneven/inconsistent) distribution of congestion. Gayah an
aganzo (2011) showed in simulations that hysteresis loops can be reduced in size throug
aptive route choice with respect to congestion. Also, demand patterns (derived from rout
oice) have been identified as a factor leading to bifurcation at the high density part of MFD
eclercq et al. (2015); Shim et al. (2019)) and network instability (Daganzo et al. (2011)
ahmassani et al. (2013)).

Recent studies have extended the MFD into three dimensions to explain the passenger an
hicle flow in multimodal networks. One notable study by Geroliminis et al. (2014) suggest
three-dimensional MFD capturing the performance of bi-modal networks by relating th
cumulation of cars and buses with the vehicle and passenger flow, which they call 3D-vMFD
-pMFD respectively. Ampountolas et al. (2017) proposed a solution to the perimete

ntrol problem by controlling the vehicle composition of bi-modal traffic. Loder et al. (2017
as able to derive 3D-MFDs using data from loop detectors and public transit in the cit
Zurich. The authors estimated the 3D model using a linear relationship between vehicl
nsity and speed for each mode and measured the effect of vehicle accumulation on the spee
cars and buses. These studies suggested negative marginal effects for additional vehicle
igher for bus than car) on network speed. Paipuri and Leclercq (2020) simulated thre
fferent MFD-based models (accumulation-, trip- and delay accumulation-based approach
er different traffic states considering the 3D-MFD concept for a grid network with dedicate
s lanes. The authors highlighted the importance of segregated 3D-MFDs to accuratel
solve traffic dynamics.

In summary, extensive research has been conducted in regard to both AMOD system
sign and the modeling of network-wide traffic. However, despite the extensive literature
e network impact of AMOD services, with respect to congestion, still warrants furthe
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vestigation, particularly in large-scale urban networks. This paper attempts to fill the ga
etween these two areas by explicitly investigating network-wide congestion effects from th
FD perspective through a high-fidelity agent-based traffic simulation platform. Followin
is section, Section 3 presents the agent-based simulation framework and the formulation o
e MFD for the simulation scenarios described in Section 4. Then, in Section 5 we analyz
d estimate the network-wide MFD (Section 5.1), followed by, Section 5.2, which discusse
e impacts of congestion from the standpoint of traveler, operator, and planner. Finally
ction 6 presents conclusions, as well as future research directions.

. Methodology

1. Simulation Framework

We utilize the high-fidelity activity- and agent-based simulation platform (SimMobilit
dnan et al. (2016)) to model daily network-wide trips, for all agents in an urban area

mMobility is comprised of three primary components operating at different temporal scales
e Short-term, Mid-term and Long-term. In this study, we will primarily make use o
mMobility Mid-term (Lu et al. (2015)), which models daily activity and travel demand an
mulates multimodal network performance at a mesoscopic level. The Mid-term is compose
three modules, the Pre-day, Within-day, and Supply, as shown in Figure 1.
The Pre-day module is a system of hierarchical discrete choice models (logit and nested

git) and simulates the daily activity patterns of individuals through an activity-based mode
stem (ABM ) (Ben-Akiva et al., 1996). The pre-day model system consists of three levels

• The day pattern level generates a list of tours and availability of intermediate stops fo
each activity type (work, education, shopping, and others).

• The tour level describes the details for each tour including destination, travel mode
time of day (arrival time and departure time) and occurrence of work-based sub-tours

• The intermediate stop level generates the intermediate stops for each tour and predict
the details of the secondary activities (including destination, mode, etc).

The Pre-day model system provides the daily activity schedule (DAS ) – a detailed de
ription of individual activity and mobility patterns, including arrival/departure time, des
nation (at zonal level), and travel mode for each trip/tour. Interested readers can find mor
tails of the Pre-day model in Siyu (2015).
At the Within-day level, the pre-day activity schedule is transformed into actions by per

rming departure time choice, route choice and within-day re-scheduling of individual trip
en-Akiva, 2010). Following this, the Supply module simulates network dynamics usin
acroscopic traffic flow relationships (speed-density models) combined with deterministi
euing models, as well as public transit operations through bus and rail controllers tha
spatch vehicles (frequency/headway-based operation), monitor the vehicle occupancy, an
termine the dwell time at stops/stations. The Supply model also includes a Smart Mobilit
rvice (SMS) controller that replicates the operations of an on-demand ride-sharing mobil

y service (Basu et al. (2018)). For trips that require on-demand services (MOD, AMOD)
e agent (passenger) sends a ride request to the controller with pertinent details, includin
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rvice type (single, shared), and origin/destination for Pick-Up/Drop-Off (PUDO). Subse
ently, the controller accommodates the client’s request by assigning and dispatching th
rvice vehicle from the available vehicle list in the fleet which satisfies constraints on:

(i) new passenger’s minimum waiting time (wtmin)

(ii) existing passenger’s additional travel time due to detours (ttad)

iii) the number of seats available in the service vehicle (Cv).

Figure 1: Simulation Framework

When idle, vehicles are directed to i) cruise within a specific area (i.e. high demand zone
ii) drive to a parking location (i.e. the nearest available) until the controller finds a new

quest to assign to the vehicle.
In order to ensure equilibrium (or consistency) between demand and supply, after runnin

e Supply simulation for a given scenario, we iteratively adjust the travel time tables (com
ising of link travel times and public transit waiting times). The objective of the within-da
arning process is to achieve equilibrium with regard to route choice decisions. Specifically
e compute the travel time in iteration i+1 (ti+1) as a weighted sum of the current travel tim
om the supply simulation (tS) and travel time in iteration i (ti): ti+1 = ti ∗w+ tS ∗ (1−w)
here w is a parameter. This process is repeated until the travel times in successive it
ations (ti+1, ti) converge. Similarly, the day-to-day learning process enables the Pre-da

8

Jo
ur

na
l P

re
-p

ro
of



m -287

in288

an ’289

ac ’290

eq291

3.292

-293

di t294

th h295

in s296

p s297

al298

,299

as s300

th s301

ve302

)

e303

nu s304

N ,305

da o306

b307

)

-308

it n309

E )310

dr :311

)

y312

pa ,313

ac ,314

T ,315

un f316

pa p317

di318

)

Journal Pre-proof
odel system to adjust the individual activity schedules with updated travel times (includ
g zone-to-zone travel-times, waiting times for public transit and waiting times for MOD
d AMOD services). This process allows for the re-evaluation of accessibility, using agents
tual travel-times, experienced during the Supply simulation and arrive at a ‘day-to-day
uilibrium.

2. Network Performance

As noted previously, the multimodal Supply simulation provides detailed information of in
vidual agent and service vehicle trajectories. Travel trajectories contain information abou
e departure/arrival time at origin/destination, travel distance, and travel mode of eac
dividual agent. Service vehicle trajectories contain information regarding schedule item
erformed by each service vehicle and their status in each time interval. These trajectorie
low us to estimate network-wide traffic measures.

Network performance of each scenario is evaluated using suitable macroscopic variables
detailed subsequently. Density is measured at the segment level (kn for segment n) acros
e network and vehicle accumulation (AV , unit: veh; note that the subscript V denote
hicles and P denotes passengers) is given by :

AV =

∑Ns
n kn · ln∑Ns
n ln

· LN (1

Where, ln is the length of segment n; LN is the total network length. Ns represents th
mber of segments equipped with sensors and is a subset of the total number of segment
. While Ns would be useful from a practical implementation perspective, in this paper
ta from all links are made available to us (Ns = N). The resulting accumulation may als

e expressed as the sum of accumulations of each mode (at the vehicle level):

AV =
∑

v∈V
Av (2

Where, V denotes the set of road-based modes. Also note that the spatial density variabil
y (γ, unit: veh/km) is measured using the standard deviation of segment density (kn) as i
q. 6. Vehicle production (PV , unit: veh-km/hr) represents the total travel distance (V KT
iven by vehicles per unit time which can be quantified using the flow at each segment qn

PV =

∑Ns
n qn · ln∑Ns
n ln

· LN (3

As noted previously, the travel trajectories capture detailed information of the mobilit
ttern of each individual vehicle/passenger including departure time, origin/destination
tivity details (type and duration), travel (waiting) times, and average trip distances (TDV

DP ). Information is also available for respective trip completion rates (TCV and TCP
it: trips/hr) that provide the number of completed trips per unit time. The production o
ssenger flow (PP ) is thus estimated using the trip completion rate (TCP ) and average tri
stance (TDP ) at the passenger level as,

PP =
∑

p∈P
TCp · TDp (4
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Where, P denotes the set of all passenger modes. Equation 4 allows us to accuratel
easure production of passenger flow without the need to use average passenger occupanc
is typically done (Geroliminis et al. (2014); Ampountolas et al. (2017); Loder et al. (2017))

he number of travelers in the simulation (captured at each time interval over the entire net
ork) represents the passenger accumulation (AP ). Modes at the vehicle (V ) and passenge
vel (P ) are summarized in Table 3 in Section 5.1.

With this background, the MFD expresses the network production (P) as a functio
accumulation (A) and congestion heterogeneity (γ) as in the literature (i.e. Knoop an

oogendoorn (2013); Ramezani et al. (2015)),

P = f(A, γ) (5

The heterogeneity term γ typically refers to the spatial spread of density:

γ =

√∑N
n (kn − k)2

N − 1
(6

MFD-based models have been extended to address congestion heterogeneity, as well a
ultimodality in various networks as described in Section 2.2. In this paper, we adapt th
ponential form found to be applicable to multimodal traffic (Geroliminis et al. (2014)) a

ell as heterogeneous urban networks (Ramezani et al. (2015)). This approach formulate
e vMFD and pMFD, corresponding to vehicles and passengers, as:

PV (AV , γ) = a · AV · ebA
3
V +cA2

V +dAV +rγ (7

PP (AV , γ,AP ) = a · AV · ebA
3
V +cA2

V +dAV +rγ+ρAP (8

where a, b, c, d, r, ρ are model parameters.

. Scenarios

The simulation scenarios in this study utilize a model of Singapore for the year 2030. Th
nthetic population of individuals and households (that are the inputs to the SimMobilit
id-term simulator shown in Figure 2) were generated by a Bayesian network approach (Su
d Erath (2015); details of the synthetic population can be found in Oh et al. (2020b))

he network (Figure 3) consists of 1,169 traffic analysis zones, 6,375 nodes, 15,128 links, an
,864 segments. The total network length (LN ) is approximately 3,175km, and includes 73
s lines serving 4,813 bus stops, and 26 MRT (rail) lines serving 186 stations.
Travel and activity demand is estimated by the Pre-day ABM system using the syntheti

opulation for year 2030 (for more details on estimation and calibration of the ABM system
fer to Oh et al. (2020b)) and also draws on data from a smartphone-based state preference
P) survey on AMOD (Seshadri et al. (2019)). Three scenarios are considered with regar
the price or fare of the AMOD services:

• AMOD single-ride price: 75%, 100% and 125% of taxis

• AMOD shared-ride price: 75% of single-ride
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Figure 2: Evaluation Framework

Figure 3: Network Topology in Singapore

Note that the taxi fare (ftaxi, unit: SGD) is determined as:

ftaxi = fbase + fkm ∗ td0 + fmin ∗ tt0 (9

which, fbase = 3.2, fkm = 0.55(< 10km), 0.63(> 10km) per km, fmin = 0.29 per min, an

0 and td0 represent the proxy of travel time and distance from a skim matrix of travel cos
timates between zones. The key reason for using the taxis as a benchmark is that existin
erature on potential pricing of AMOD services has typically pegged it against taxis, an
is provided some rationale for the choice of levels (Bösch et al. (2018), Spieser et al. (2014))
ore importantly, the per-distance cost of traditional taxis versus MOD in Singapore are i
ct very similar (0.55 S$/km versus 0.5 S$/km), and further, the taxi tariff structure i
ngapore also includes surcharges for the peak period, similar to the surge pricing in th
se of on-demand services.

Thus, we simulate four scenarios of interest that differ in modal availability and AMOD
icing: Baseline, and three AMOD scenarios with different pricing schemes (75%, 100% an
5% of taxis). In the baseline, travel modes available to agents are the existing modes (EM)
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hich include private car, car-pooling (with 2 or 3 people per household), private bus, walking
xi, MOD (Uber-like ride-sourcing services), public transit (bus, rail) with access/egress b
alk. In the AMOD scenarios, in addition to the existing modes, the AMOD service is mad
ailable to travelers. AMOD services include door-to-door services with single/shared ride
d first/last-mile connectivity to public transit (e.g. rail station).

(a) By Activity Type (b) By Mode

Figure 4: Travel Demand Pattern over Time-of-day

Figure 4 shows the distribution of demand for the different pricing scenarios by mode an
tivity types, each of which shows a different temporal pattern (Figure 4a). The Work trip
mprise the largest portion of trips particularly during the peak periods. Education trip
ow similar patterns with Work in the morning, however, as expected, many trips occu

efore the PM peak period (around 2–3PM). Trips for Shopping and Other activities (suc
leisure, recreation) are observed throughout the day. A large number of additional trip

r Other activities occur during and after PM peak.
Table 1 lists the mode shares for each scenario (temporal distribution in Figure 4b)

he total number of passenger trips for 24 hours is 8,991,057 trips (baseline), 8,995,54
ips (75% pricing), 8,992,168 trips (100% pricing), 8,994,926 trips (125% pricing). Thes
ssenger trips (around 9 million) for all scenarios are simulated along with backgroun
affic of freight vehicles (665,929 trips) estimated by the SimMobility Freight model (Saka
al. (2019)). As expected, the introduction of AMOD leads to a reduction in the shar
existing modes. Particularly, the share of public transit (PT), including Bus and Rai

duces by 2.39–3.86%, while reductions in the number of private vehicle trips (PVT) ar
aller in magnitude (1–2%). Thus, a large portion of AMOD demand (door-to-door servic

ith AMOD single/shared) includes shifts from PT with walk access (more than 55%), whil
e shift rates from other modes are relatively low (around 4%, 14%, 5% of AMOD deman
e from private car, taxi, and MOD trips, respectively). Overall, the shares of AMOD rang
om 5.77–8.87% across the three pricing scenarios, while the shifts from original share of PT
ith walk access to PT access by AMOD are significantly smaller.
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Table 1: Mode Share

Modes Baseline
Intro. of AMOD

75% 100% 125%

PVT
Car/Carpool 18.75% 17.33% 17.7% 17.93%
Taxi 2.16% 1.6% 1.69% 1.75%

PT

Bus 24.33% 21.49% 22.14% 22.57%
Rail(Walk)a 23.81 % 20.54 % 21.21% 21.67%
Rail(MOD)a 0.36% 0.3% 0.32 % 0.32%
Rail(AMOD)a 0 2.31% 1.88% 1.55%

MOD Single/Shared 6.41% 5.38% 5.51% 5.64%

AMOD Single/Shared 0 8.87% 7.01% 5.77%

Other 24.16% 22.18% 22.54% 22.79%
a Access/egress to/from rail station by Walk, MOD, and AMOD respec-
tively.

The large difference between the share of MOD and AMOD can be explained with th
fferences in perception of users towards AMOD relative to MOD, based on data from th
ate preferences survey in Seshadri et al. (2019) which suggest the users tend to prefer th
MOD services (with all other factors being the same) with an inclination towards new
rvices and technologies and the guarantee of AV safety.

On the supply, the public transit vehicles (buses and trains) operate in accordance wit
ed schedules as described in Section 3.1. Regarding the on-demand services, the flee

zes for the three AMOD pricing scenarios (75%, 100% and 125% respectively) are fixed a
,000, 33,000, and 27,000 vehicles comprising 4- and 6-seaters (see Oh et al. (2020b) for mor
tails). Note that this fleet size is derived by finding an optimal size, which yields sufficien
et utilization (minimizing the number of idle vehicles during peak period), reasonabl
ssenger waiting times (less than 6 min) and service satisfaction rates (serving all incomin
quests). The required MOD fleet size ranges from 20,000–22,000 for each scenario. Th
-demand service vehicles are operated using the assignment and rebalancing algorithms o
e SMS controller. The assignment parameters (wtmin, ttad) are set to 10 min, and vehicle
e set to cruise during the rebalancing interval (1 min) and directed to the nearest availabl
rking if there is no additional service assignment.
Table 2 summarizes the simulation configurations and scenario factors described in thi

ction. Each scenario was simulated via several iterations of the within-day and day-to-da
arning process to ensure the consistency between demand and supply.

. Results and Analysis

1. MFD: Analysis, Modeling, and Estimation

The Supply module simulates multimodal network performance (travel demand from th
e-day and within-day models) and specifically, all modes listed in Table 3. For our anal
is, the modes have been classified into two categories, based on whether they contribut
vehicle (vMFD) and passenger flow (pMFD) respectively. First, the private vehicle trip
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Table 2: Experimental Settings

Factor
Scenarios

Baseline
Intro. AMOD

75% 100% 125%

Simulation
config.

Simulation model SimMobility Mid-term
Simulation period 24 hours
Scope of simulation Singapore network with 6.5M agents

Scenario
factor

Modal availability Existing
modes
(EM)

EM + AMOD

Num. of tripsa 9,656,986 9,661,473 9,658,097 9,660,855
Fleet sizeb - 43,000 33,000 27,000
Fleet composition - 4- and 6-seaters
Fleet assignment wtmin, ttad = 10min, s.t. availability(Cv)
Fleet rebalancing Rebalancing every 1min interval

a This total number of trips include 665,929 freight trips across all scenarios.
b Fleet size taken from Oh et al. (2020b).

V T ) contribute to both passenger and vehicle traffic on the network. In the case of on
mand services, MOD and AMOD contribute to both categories when the service vehicl
ives with passenger(s). In contrast, MODOP and AMODOP represent operational move
ents, including empty trips to pick up the passenger, cruising for parking or moving to
rking location, and hence, contribute to only vehicle traffic. Public transit passenger trip
e captured by the modes Bus (or Rail) at the passenger level, while BusOP represent
e bus vehicle movement with fixed routes and schedules. Also note that all trains (labele
RailOP ) are operated on the rail network and do not directly affect road network traf

. Other modes (labeled as Other) were also considered, such as walking, for passenge
w estimation. As noted in Section 4, the freight commodity flow is considered throug
ckground freight traffic and accounted for in the vehicle flow estimation.
Figure 5 presents the temporal distribution of network-wide production of vehicle (PV

d passenger flow (PP ). At the vehicle level (Figure 5a), one can notice that traffic flow
creases significantly from the baseline scenario with the introduction of AMOD, especiall
ring the peak periods. Moreover, in the lower pricing scenarios, which require a larger flee

ze to accommodate the higher AMOD demand (Table 2), we observe increased traffic flow
an in the higher pricing case (125% scenario). In contrast, unlike vehicle production, pas
nger production curves (Figure 5b) do not change significantly across scenarios, indicatin
at the temporal distribution of passenger flows is not significantly affected by the increase
affic flows on the network.

Figure 6a plots the vMFD, which relates the production of vehicle traffic (PV ) wit
hicle accumulation (AV ) and spatial variability of density (γ). The time-of-day is als
arked on each point of production/accumulation in the figure. Two distinct patterns ar
sually identifiable, showing the loading and unloading of traffic congestion before and afte
M and PM peak periods. Comparing the scenarios, the maximum accumulation of vehicle
ring the peak increases by 8.7–14.5% in the AMOD scenarios (150,778, 150,274, 143,15
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Table 3: Travel Modes

Category Mode
Vehicle flow

(vMFD)
Passenger flow

(pMFD)

PVT
Car/Carpool X X
Taxi X X

MOD
MOD X X
MODOP

a X -

AMOD
AMOD X X
AMODOP

a X -

PT

Bus - X
BusOP

b X -
Rail - X
RailOP

c - -

Other - X
Freight X -

a MODOP /AMODOP represents empty trips made by MOD and AMOD ser-
vice vehicles for operational purposes (such as driving to passenger, parking,
cruising).
b Travel details on BusOP is collected from the bus trajectory with the pre-
defined lines and frequency.
c Trains are operated in an underground rail network (RailOP ) and excluded
from both levels.

hicles for the 75%, 100%, and 125% scenario respectively) from that of baseline (131,68
hicles). In the case of vehicle production, maximum production increases by about 5.6
8% from the baseline to AMOD scenarios: 4,186,462 veh-km/hr (Baseline), 4,553,106 veh

/hr (75% pricing), 4,474,012 veh-km/hr (100% pricing), and 4,419,385 veh-km/hr (125%
icing). The heterogeneity of network congestion also increases in the AMOD scenarios
e maximum spatial variability of density (γ) increases from 88 (veh/km) in the baselin
97–102 (veh/km) in the AMOD scenarios at around 8AM (morning peak period). Thi

crease in heterogeneity leads to the appearance of clockwise hysteresis loops in the vMFD
hich demonstrate the delay in the recovery of production from the congested state. W
antify the magnitude of hysteresis (Geroliminis and Sun (2011)) by the gap between th
oduction values when loading (P lV ) and unloading (PuV ) at a given accumulation level as:

h(AV ) = ∆P(AV ) = P lv(AV )− Puv (AV ) (10

Note that in computing the hysteresis, we have used a smoothing spline estimate (Kimel
rf and Wahba (1970)) to interpolate the production values where required. Figure 7 com
res the magnitude of hysteresis between the baseline and the 125% pricing scenario. In th
seline, the maximum value is 549,065 and 386,942 (veh-km/hr) during the AM and PM

eak period respectively. In the AMOD scenario, h(AV ) increases to 649,216–653,581 an
7,930–591,355 (veh-km/hr) for the two peak periods. The total hysteresis during AM an

M peak period (H =
∫ T
t=1 h(AV )dt) increases by around 24.49–28.56% when introducin

e AMOD service.
According to Eq.7, the shape of the MFD is determined by the two variables (AV , γ) an
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(a) Simulated PV (b) Simulated PP

Figure 5: Distribution of Network Production over Time-of-day

odel parameters (a, b, c, d, r). We estimate the parameters using a nonlinear least square
ethod (Kass (1990)) to fit the simulated data (P ′

V ) with constraints on production Pv(> 0)
cumulation AV (0 6 Av 6 max(A′

V )) and space-mean speed S(∀v ∈ V : ∂SV /∂Av ≤ 0)
here v ∈ V (set of road-based modes).

min
a,b,c,d,r

Z = ‖PV − P
′
V ‖2 (11

Table 4 lists the estimated parameters, which were all found to be statistically significant
he predicted vehicle production curve (based on the fitted model) for each scenario i
own by the red line in Figure 6b, which illustrates the evolution of network dynamic
time-of-day and captures the hysteresis loops during the on- and off-set of congestion

he discrepancy between the simulated and predicted production is measured using th
rmalized root mean square error (RMSN) in Eq. 12, and ranges between 0.034–0.036%
er the scenarios.

RMSN =

√
T
∑T

t=1[PV (t)− P ′
V (t)]2

∑T
t=1 P

′
V (t)

(12

In case of the pMFD, Figure 8a shows the production of passenger flow with respect t
e aggregate number of vehicles on the network and the spatial variability of density. Th
ape of the pMFD is different from that observed in the case of the vMFD. It shows (i
larger gap between two production curves of loading and unloading during the AM pea
esulting in large clockwise hysteresis loops), and (ii) small counter-clockwise hysteresis loo
ring the PM peak. These two points can be attributed to the nature of passenger tri

stances as elaborated below:
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(a) Simulated PV (b) Predicted PV (Red)

Figure 6: vMFD : PV = f(AV , γ)

(i) Difference in the average trip distances at the vehicle and passenger level (TDV >
TDP ). The average trip distance of vehicle (TDV ) reduces from around 12.5km (whil
loading) to 10–11km (while unloading after 8:30AM). In case of TDP , it decreases mor
significantly from around 9km (while loading) to 6.5km (while unloading). Since th
production is determined by both trip completion rate and trip distance, the large
decrease in TDP results in a higher trip completion rate, as well as a larger gap of P
between the loading and unloading in case of the pMFD.

(ii) Longer trip distances while unloading during the PM peak period. The passenge
trip distance (TDP ) appears to be longer than 8km after 7PM, during the unloading
while being shorter (7–8km) for those trips completed before 7PM, during the loading
This contributes to higher production during unloading and results a counter-clockwis
hysteresis loop. Additional clues can be found in the temporal demand pattern b
activity types (see Section 4): more trips (e.g. Other activity in Figure 4a) are generate
and contribute to higher production in the offset of congestion during the PM pea
period.

In a similar manner as the vMFD, we estimate the model described in Eq.8 and th
timated parameters are summarized in Table 4, all of which were found to be statisticall
gnificant. The discrepancy between simulated and predicted passenger productions (quan
fied by the RMSN) are found to range between 0.074–0.079 % across the scenarios. Also, a
own in Figure 5b and Figure 8a, the maximum and overall temporal patterns of passenge
oduction (PP ) remain similar across the scenarios, in contrast with the the distinct im
cts on PV in the vMFD observed with the introduction of AMOD. This may be ascribe
a range of factors, one of which is the cannibalization of transit by AMOD (explained i
ction 4). Even though the road network congestion is more severe in the AMOD scenario

17

Jo
ur

na
l P

re
-p

ro
of



(a r502

flo e503

aff n504

ge505

M

506

S

B
7
1
1

507

Journal Pre-proof
Figure 7: Magnitude of Hysteresis (h(AV ))

s verified in Section 5.2.2), the effects of network congestion on the production of passenge
w may be minimal as a significant share of AMOD (‘faster’ modes in general but which ar
ected by the additional network congestion) includes shifts from transit (‘slower’ modes i
neral but which are unaffected by network congestion).

Table 4: Estimation Result for MFD

odel
Parameters

a b c d ρ r

vMFD

Baseline 0.284 7.50 · 10−5 −6.28 · 10−10 1.954 · 10−15 - −0.01346
75% 0.328 6.65 · 10−5 −4.79 · 10−10 1.286 · 10−15 - −0.01462
100% 0.366 6.26 · 10−5 −4.38 · 10−10 1.151 · 10−15 - −0.01465
125% 0.298 7.10 · 10−5 −5.42 · 10−10 1.537 · 10−15 - −0.01452

pMFD

Baseline 0.608 6.42 · 10−5 −8.99 · 10−10 2.94 · 10−15 5.22 · 10−6 0.00634
75% 0.734 5.07 · 10−5 −5.73 · 10−10 1.654 · 10−15 5.39 · 10−6 −0.00705
100% 0.662 5.48 · 10−5 −6.12 · 10−10 1.794 · 10−15 4.84 · 10−6 −0.00534
125% 0.622 5.70 · 10−5 −6.85 · 10−10 2.04 · 10−15 5.19 · 10−6 −0.00207

Table 5: Primary (Well-to-wheels) Energy Consumption (unit: kWh)

cenarios
Fuel Electricity

v = PV T BusOP MOD MODOP Freight Total AMOD AMODOP Total

aseline 10,186,083 505,332 2,901,130 1,337,413 3,798,208 18,728,167 0 0 0
5% 9,398,493 503,049 2,254,457 1,003,054 3,665,271 16,824,324 4,107,287 2,354,117 6,461,405
00% 9,596,024 503,917 2,394,551 1,098,965 3,663,389 17,256,844 3,344,555 1,905,370 5,249,925
25% 9,693,896 504,227 2,477,469 1,154,828 3,661,884 17,492,304 2,815,517 1,593,608 4,409,125
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(a) Simulated PP (b) Predicted PP (Red)

Figure 8: pMFD : PP = f(AV , γ)

Table 6: Vehicle Emission: NOx and PM (unit: kg)

cenarios
v = PV T BusOP MOD MODOP Freight Total
NOx PM NOx PM NOx PM NOx PM NOx PM NOx PM

aseline 1080.6 72.3 963.4 17.9 272.9 20.6 125.9 9.5 2856.8 63.1 5299.7 183.4
5% 993.1 66.7 954.1 17.8 209.8 16.0 93.3 7.1 2745.9 60.6 4996.1 168.3
00% 1015.4 68.1 956.2 17.9 223.5 17.0 102.6 7.8 2746.5 60.7 5044.2 171.4
25% 1025.7 68.8 958.2 17.9 231.6 17.6 108.1 8.2 2744.5 60.6 5068.1 173.1

2. Impacts on Energy, Emissions and Congestion

2.1. Energy and Emissions

In this section, we examine the impacts of AMOD on energy and emissions at the net
ork level. We assume that the AMOD fleet is fully composed of battery electric vehicle
EV) and the other vehicle categories are composed of gasoline/diesel-fueled vehicles (Eur
standard for passenger vehicles, bus, and freight trucks). Table 5 and Table 6 summariz
e emissions and energy consumption for each travel mode (v) based on the total vehicle-km
aveled (VKT). Note that this VKT is equivalent to the total PV for 24h, which is 31.78
.65, 36,65, and 35.51 million-km for the baseline, 75%, 100%, and 125% scenarios respec

vely. As noted previously, we observe a significant increase in VKT ranging from 11.8-18.5%
r the AMOD scenarios, compared to the baseline.

Energy consumption of the AMOD fleets is measured using an average energy con
mption rate (ECR). According to real-world estimation data (Fetene, 2014), the ECR
creases with vehicle travel distance as follows: 233Wh/km, 183Wh/km, 166Wh/km fo
ort (TDv ≤ 2km), medium (2km ≤ TDv ≤ 10km), and long distances (TDv ≥ 10km)
he energy consumption is computed by multiplying the production factor (2.99, US averag

19

Jo
ur

na
l P

re
-p

ro
of



en e525

tr s526

6. -527

pa n528

fo -529

ti )530

ta e531

ex e532

m e533

M -534

sp )535

is s536

re -537

re .538

T y539

24540

t541

pa g542

to s543

fo )544

an ,545

0.546

(P g547

(N e548

A t549

em y550

co551

5.552

r553

to x554

(T o555

de556

)

,557

as )558

to ,559

th560

(A561

.562

W l563

(v564

)

Journal Pre-proof
ergy-to-fuel ratio), which incorporates well-to-wheels effects while taking into account th
ansmission and distribution losses of BEVs. Accordingly, the total energy consumption i
46GWh, 5,25GWh, 4,41GWh for the 75%, 100%, 125% scenarios respectively. As antici
ted, the increase in VKT, in lower pricing scenarios, results in larger energy consumptio
r both service and operational purposes. Note that a significant portion of energy consump
on is caused by the operating trips (empty trips for passenger pick-up, cruising, parking
king around 36% of total energy consumption across AMOD scenarios. Further, for th
isting road-based modes (non-electric vehicles), we compute energy consumption using th
iles per gallon gasoline equivalent (MPGe) of each vehicle type. By assuming the futur
PGe as 47(5.0L/100km) and 52(4.5L/100km) for gasoline and diesel-powered vehicles re
ectively (Ec.europa.eu), total consumption (by PV T , BusOP , MOD, MODOP , Freight
determined to be 18.73GWh, 16.82GWh, 17.26GWh, and 17.49GWh for the four scenario
spectively. Note that 1 MPGe is equivalent to 0.04775km/kWh (EPA (2011)) and the cor
sponding average energy-to-fuel ratios are 1.17 and 1.05 for gasoline and diesel respectively
hus, total energy consumption by all vehicles increases with the introduction of AMOD b
.33%, 20.18%, and 16.94% for the 75%, 100%, and 125% scenarios respectively.
In the case of vehicle emissions, we consider the production of NOx and PM (exhaus

rticulate matter) by passenger cars as well as buses and trucks on the network. Accordin
the emission testing (Euro-6 standard) results in Ligterink (2017), the unit emission

r NOx and PM are estimated dependent on vehicle types (passenger cars, buses, trucks
d congestion as: 0.043–0.063g/km (NOx), 0.0037g/km (PM) for passenger car (petrol)

69–1.11g/km (NOx), 0.015g/km (PM) for buses, 0.28–0.44g/km (NOx), 0.0061–0.010g/km
M) for trucks. Total emissions reduce with the introduction of AMOD from 5,299.7k
Ox) and 183.4kg (PM) in baseline to 4,996–5,068kg (NOx) and 168–173kg (PM) in th

MOD scenarios. In summary, the introduction of AMOD may bring about significan
ission reductions (4.3–5.7% in NOx and 5.6–8.2% in PM), while resulting in more energ

nsumption (up to 24.33% from the baseline scenario).

2.2. Congestion and Delay

The increase in network traffic contributes to congestion and travel delays. In orde
further quantify network congestion, we examine the distance weighted trip speed inde
SIV ) using the individual vehicle’s trip speed (TSv) and the travel distance from origin t
stination (TDv):

TSIV =

∑
v

(
TDv ∗ (TSv/TS

0
v)
)

∑
v TDv

(13

where, TS0
v is the free-flow speed between origin and destination of individual v. Clearly

seen in Figure 9a, the trip speed index decreases from 1 in the off-peak period (free-flow
values of around 0.65 and 0.8 in the AM and PM peak periods respectively. Furthermore
e TSIV for AMOD scenarios decreases significantly during the peak periods by 8–11.9%
M) and 7.8–9.7% (PM) from the baseline.
The increase in VKT and decrease in network speed, as expected, affect travel experience

e quantify this effect using a measure of delay in travel-time (IV Dv) at the individual leve
):

IV Dv = IV TTv − IV TT 0
v (14
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where, IV TTv is the in-vehicle travel-time of individual vehicles; IV TT 0
v is the free-flow

avel time. The distributions of IV TTv and IV Dv are shown in Figure 9b. Compared t
e baseline (5.2 and 3.7min of IV Dv for AM and PM peak period), IV Dv increase range
om 7.8–15%, 20–23% for AM and PM peak periods across the AMOD scenarios.

(a) Trip Speed Index (TSIV )
(b) IV TTv and IV Dv

Figure 9: Congestion Effects

Finally, we measure the changes of travel times of individual travelers p with mode v
he journey time (JTp,v) is the sum of two components:

JTp,v = WTp,v + IV TTp,v (15

where, WTp,v(= wtp,v + aetp,v) includes the individual waiting time (wtp,v) for service
MOD, AMOD, PT, and the access/egress time (aetp,v) by walk to/from bus stops an

RT(rail) stations for transit service; IV TTp,v is the in-vehicle travel-time of individua
ssengers with a chosen mode v (incl. EM (PVT, PT, MOD) and AMOD) for each journey
As noted in Section 4, the introduction of AMOD may cause modal shifts of PT demand

assengers are estimated to experience, on average, around 38.5 and 43.9 min of JTp,PT wit
7 to 10.3 min of WTp,PT and 35.2 and 28.2 min of IV TTp,PT with public bus and ra
rvice respectively. Figure 10 shows the changes in the average of journey time of AMOD
ers shifted from baseline: WTp,EM and IV TTp,EM in the baseline and WTp,AMOD an
TTp,AMOD in AMOD scenarios. It shows a significant reduction of JTp,v of ‘transit’ user
baseline by 48–55% (single) and 37–45% (shared) with less waiting and travel time i

MOD scenarios. Note that the waiting times of AMOD are around 4.4 min (off-peak
d range from 5–6 min (during peak periods) on average (ranging between 1–3 min o
lay). This waiting time (WTp,AMOD) incurs additional travel times for ‘PVT’ passenger

n baseline) resulting in an increase in JTp,AMOD by 41–44% and 64–75% with AMOD
ngle/shared.
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Figure 10: Changes in Journey Time of AMOD User

. Conclusion

This paper evaluates the network impacts of AMOD on network traffic, congestion, en
gy, and vehicle emissions by utilizing agent-based simulation. The simulation framewor
odels activity-based travel demand, supply (including fleet operations and multimodal net
ork performance) and their interactions. Scenario simulations of the entire urban network o
ngapore yield several insights into the impacts of AMOD: Introduction of AMOD service
ay induce additional vehicle traffic resulting in more congestion relative to the baselin
enario. The network congestion in AMOD scenarios is due in part to the demand pattern
.e. cannibalization of transit shares) as well as dead-heading and empty trips for operationa
rposes. The vehicle accumulation and production increases by 8.7–14.5% and 5.6–8.8% re
ectively, and the total magnitude of hysteresis loops increases by more than 24% with th
troduction of the AMOD service. Despite the increase in network congestion, the passenge
oduction is not significantly impacted. The estimated models of vMFD and pMFD predic
e production at the vehicle and passenger level and their dynamics accurately. In addition
e impacts of AMOD in terms of energy and emissions is quantified. The introduction o
MOD leads to increased energy consumption (by 16.94–24.33% from baseline), althoug
hicle emissions in terms of NOx and PM are reduced (by 4.3–5.7% and 5.6–8.2%, respec
vely). The travel delay has been increased up to 23% in the case of the AMOD scenari
ith an increase of VKT, while the journey time of the travelers who shifted from transit t
MOD can be significantly improved.

Based on the simulation and modeling framework, several avenues for future research re
ain, including the testing of (existing/emerging) MFD-based and other traffic managemen
easures and policies (i.e. vehicle quota systems, route guidance systems, perimeter contro
ngestion pricing in multimodal urban networks) for maximizing social welfare at both th
cal and urban scale. The proposed framework can also be applied to evaluate the effec
long-term impacts of AMOD on land-use as well as car-ownership, which are interestin
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eas for future research.
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